Identification of functional LsrB-like autoinducer-2 receptors.
نویسندگان
چکیده
Although a variety of bacterial species have been reported to use the interspecies communication signal autoinducer-2 (AI-2) to regulate multiple behaviors, the molecular mechanisms of AI-2 recognition and signal transduction remain poorly understood. To date, two types of AI-2 receptors have been identified: LuxP, present in Vibrio spp., and LsrB, first identified in Salmonella enterica serovar Typhimurium. In S. Typhimurium, LsrB is the ligand binding protein of a transport system that enables the internalization of AI-2. Here, using both sequence analysis and structure prediction, we establish a set of criteria for identifying functional AI-2 receptors. We test our predictions experimentally, assaying key species for their abilities to import AI-2 in vivo, and test their LsrB orthologs for AI-2 binding in vitro. Using these experimental approaches, we were able to identify AI-2 receptors in organisms belonging to phylogenetically distinct families such as the Enterobacteriaceae, Rhizobiaceae, and Bacillaceae. Phylogenetic analysis of LsrB orthologs indicates that this pattern could result from one single origin of the functional LsrB gene in a gammaproteobacterium, suggesting possible posterior independent events of lateral gene transfer to the Alphaproteobacteria and Firmicutes. Finally, we used mutagenesis to show that two AI-2-interacting residues are essential for the AI-2 binding ability. These two residues are conserved in the binding sites of all the functional AI-2 binding proteins but not in the non-AI-2-binding orthologs. Together, these results strongly support our ability to identify functional LsrB-type AI-2 receptors, an important step in investigations of this interspecies signal.
منابع مشابه
Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2.
Our previous studies showed that the Aggregatibacter actinomycetemcomitans RbsB protein interacts with cognate and heterologous autoinducer 2 (AI-2) signals and suggested that the rbsDABCK operon encodes a transporter that may internalize AI-2 (D. James et al., Infect. Immun. 74:4021-4029, 2006.). However, A. actinomycetemcomitans also possesses genes related to the lsr operon of Salmonella ent...
متن کاملA Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.
Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We sho...
متن کاملSinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria.
Many bacterial species respond to the quorum-sensing signal autoinducer-2 (AI-2) by regulating different niche-specific genes. Here, we show that Sinorhizobium meliloti, a plant symbiont lacking the gene for the AI-2 synthase, while not capable of producing AI-2 can nonetheless respond to AI-2 produced by other species. We demonstrate that S. meliloti has a periplasmic binding protein that bind...
متن کاملQuorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production.
In bacteria, the regulation of gene expression in response to changes in cell density is called quorum sensing. Quorum-sensing bacteria produce, release, and respond to hormone-like molecules (autoinducers) that accumulate in the external environment as the cell population grows. In the marine bacterium Vibrio harveyi two parallel quorum-sensing systems exist, and each is composed of a sensor-a...
متن کاملEvidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer.
Helicobacter pylori possesses a homolog of the luxS gene, initially identified by its role in autoinducer production for the quorum-sensing system 2 in Vibrio harveyi. The genomes of several other species of bacteria, notably Escherichia coli, Salmonella enterica serovar Typhimurium, and Vibrio cholerae, also include luxS homologs. All of these bacteria have been shown to produce active autoind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 22 شماره
صفحات -
تاریخ انتشار 2009